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Abstract—Health-related IoT devices are becoming more pop-
ular in recent years. On one hand, users can access information of
their health conditions more conveniently; on the other hand, they
are exposed to new security risks. In this paper, we presented,
to the best of our knowledge, the first in-depth security analysis
on home-use electroencephalography (EEG) IoT devices. Our key
contributions are twofold. First, we reverse-engineered the home-
use EEG system framework via which we identified the design
and implementation flaws. By exploiting these flaws, we developed
two sets of novel easy-to-exploit PoC attacks, which consist of four
remote attacks and one proximate attack. In a remote attack, an
attacker can steal a user’s brain wave data through a carefully
crafted program while in the proximate attack, the attacker can
steal a victim’s brain wave data over-the-air without accessing
the victim’s device on any sense when he is close to the victim.
As a result, all the 156 brain-computer interface (BCI) apps in
the NeuroSky App store are vulnerable to the proximate attack.
We also discovered that all the 31 free apps in the NeuroSky
App store are vulnerable to at least one remote attack. Second,
we proposed a novel deep learning model of a joint recurrent
convolutional neural network (RCNN) to infer a user’s activities
based on the reduced-featured EEG data stolen from the home-
use EEG IoT devices, and our evaluation over the real-world
EEG data indicates that the inference accuracy of the proposed
RCNN is can reach 70.55%.

I. INTRODUCTION

Health-related IoT devices have been constantly attracting
public attention in recent years. According to a most recent
report, the market for healthcare IoT reaches 41.22 billion
USD in 2017 and is projected to grow to 158.07 billion
USD by the year of 2022 [1]. Besides the dramatic growing
trend of the gross benefits, health-related IoT market is also
prospering in the aspect of diversity of its products. Devices
like smart wristbands and smart scales are two popular devices
which a user can monitor her health conditions varying from
heartbeats, sleep level, to muscle mass or even bone mass.

On one hand, users gain tangible benefits from the health-
related IoT devices. On the other hand, however, users are
also exposed to new and unknown risks. In January 2017,
Department of Homeland Security (DHS) confirmed that
nearly 465,000 implanted heart pumping devices, which are
actively used in hospitals all-round the US, are vulnerable
to remote attacks [2]. Hackers can remotely hack into a
patient’s defibrillator and trigger irregular heart rhythms which
can cause a cardiac failure. In September 2017, DHS issued

a warning stating that approximately 4,000 wireless syringe
infusion pumping devices are vulnerable to remote attacks [3].
Attackers can exploit a loophole to murder a patient by
remotely giving the patient overdose infusion. As one can see
from these cases, different from compromising traditional IoT
devices such as smart hues or thermostats that result in system
failures, compromising health-related IoT devices can not only
cause leakage of a user’s health information but also directly
jeopardize the user’s life.

Unlike the professional medical IoT devices mentioned
above whose security problems have been gradually explored
and addressed by more and more researchers, the security
of home-use health-related IoT devices is seriously under-
investigated. Therefore, a natural question is raised: are emerg-
ing home-use health-related IoT devices, which have a large
number of users, also suffer from similar security threats?
To answer this question, we performed, to the best of our
knowledge, the first security analysis on home-use electroen-
cephalography (EEG) IoT devices. The reason we chose EEG
devices for our research is that they have a drastic growing
market which is projected to reach 1.40 billion USD by the
year of 2025 [4]. Moreover, EEG data is one of the most
important and sensitive human health data that can reveal an
individual’s sensitive health conditions. Martinovic et al. [5]
showed that it is completely possible for an attacker to guess a
user’s password through EEG data. Therefore, it is urgent and
critical to investigate the security vulnerabilities of home-use
EEG devices.

In this paper, we studied the security of home-use EEG
devices targetting the ThinkGear AM (TGAM) module man-
ufactured by NeuroSky. NeuroSky is the most well-known
manufacturer of the home-use EEG devices since it is the
first company to make brainwave devices for home use in the
world [6], and it still holds the largest market share of home-
use EEG devices [7]. TGAM is the exclusive brain wave sensor
ASIC module developed by NeuroSky; it was elected as TIME
Magazine’s 100 Best Toys of All Time and has a potential to
be widely adopted by home-use EEG IoT manufacturers [8].
In this research, we demonstrated that based on the security
flaws of the EEG system framework due to the coarse-grained
implementation, an attacker is able to construct two sets of
easy-to-exploit PoC attacks, which contain 4 remote attacks



and one proximate attack, to actively steal a user’s brainwave
data. Because the security flaw exploited by our proximate
attack exists in a mandatory step for the EEG data retrieval,
all the 156 brain-computer interface (BCI) apps appearing in
the NeuroSky App store, the official App store for TGAM
devices, are vulnerable to this attack. We also conducted an
empirical static binary analysis against all the 31 free apps
in the NeuroSky App store and found that all of them are
vulnerable to at least one remote attacks.

In addition, we studied the potential privacy leakage prob-
lem from the EEG data collected by the TGAM devices. It
is well researched that rich-featured EEG signals collected by
strict medical-use devices or research-use devices can reveal a
user’s sensitive information, e.g., focal disorders [9] [10] and
sleep levels [11]. However, whether or not reduced-featured
EEG data collected by home-use EEG devices can also pose
similar privacy threats remains unexplored. In this paper, we
proposed a novel RCNN model targeting the reduced-featured
EEG data collected by home-use EEG IoT devices to infer a
user’s focusing activities; our evaluation results over the real-
world EEG data revealed that the proposed RCNN has an
accuracy as high as 70.55%, which significantly outperforms
the other 11 most widely-used learning models.

Finally, we proposed three easy-to-adopt defense solutions
to eliminate our proposed attacks. Two defense mechanisms
were devised for the remote attacks and the other one was
devised for the proximate attack.

Paper Organization. The rest of the paper is organized
as follows. Section II outlines related works. Section III
introduces the preliminary knowledge on EEG, and our threat
model. Section IV details the demystified EEG system frame-
work. Section V demonstrates the security flaws of the frame-
work and the implementations of our attacks based on these
flaws. Section VI presents our deep learning model for the
reduced-featured EEG inference attack. Section VII reports the
performance of our attacks. Section VIII presents our defense
solutions and Section IX concludes the paper.

II. RELATED WORKS

In this section, we provide a brief overview of the most
related research.

Health-related IoT Security. The security of health-related
devices and systems have gained more and more attention
in recent years due to its rapid development and its tight
connection to personal healthcare. Eberz et al. [12] pre-
sented a systematic attack against the ECG biometrics and
demonstrated its effectiveness by applying it to a successful
commercialized ECG biometric product, the Nymi Band.

Rahman et al. [13] investigated the security and privacy
issues of Fitbit; after reversely engineering the ANT proto-
col for data communications, they generated various attacks
and proposed the corresponding defense mechanisms. Li et
al. [14] demonstrated several security attacks on a popular
glucose monitoring and insulin delivery system available on
the market; by recovering the radio protocol, they proposed
various attack scenarios and performed two types of attacks.

Martinovic et al. [5] explored a research-use EEG device,
EPOC, as a potential attack intermediary to infer private
information about their users. Compared to the four pieces
of research work mentioned above, besides the security of the
health-related device itself, we also addressed the problem of
sensitive information leak by the captured EEG signals. Eberz
et al. demonstrated that a user’s biometrics, e.g., ECG and eye
movements, can be inferred by other fitness data gathered in
a different context [15].

Alongside the security study on health-related IoT devices,
many works focused on building smart health systems and
platforms. In [16] [17], the authors discussed the concept
of health-related smart city and the home-based wellness
platform. Mirza et al. [18] provided an overview of the design
and modeling of the current smart health monitoring systems.
Coincidentally, ISLAM et al. [19] investigated the e-Health
technologies and reviewed the existing advanced network
architectures for e-Health; they also analyzed the distinct secu-
rity and privacy features of the e-health structures, proposed
a collaborative security model, discussed the innovations in
health care contexts, and addressed various e-health policies
and regulations.

More General IoT Security. General IoT security research
has been thriving in recent years. Fernandes et al. [20] studied
the Samsung’s SmartThings smart home system by performing
a combination of static analysis, runtime testing, and manual
analysis on a dataset of 499 SmartApps and 132 device
handlers. They discovered 2 design flaws and developed 5
PoC attacks targetting the SmartThings system. Costin et
al. [21] managed to unpack and analyze 26,275 embedded
system firmware images crawled from the Internet; with static
analysis, they discovered a total of 38 previously unknown
vulnerabilities in over 693 firmware images. Celik et al. pro-
posed a novel sensitive information tracking algorithm based
on taint analysis to effectively detect the sensitive information
leakages in SmartThings market apps [22]. Chen et al. pre-
sented a fuzzing mechanism which discovers possible memory
corruptions in IoT device even the firmware is absent [23].

There also exists research targetting the communication
protocols of the IoT systems. For example, Ronan et al.
[24] discovered a bug in the Touchlink part of the ZigBee
Light Link protocol implemented by Philips, and implemented
a smart light bulb worm which automatically spreads and
controls all the Philips smart lights in a city. Our work is
along with a similar line except that we further analyzed the
captured EEG signals rather than just taking control of the
devices.

III. BACKGROUND

In this section, we first briefly introduce the taxonomy of
EEG devices. Then we demonstrate our threat model for the
home-use EEG devices.

A. EEG Taxonomy

According to our research, the current EEG methods and
their corresponding devices can be classified into three cate-

2



gories based on the uses of EEG: for strict medical use, for
research use, and for home use. Those for strict medical-use
are mainly employed for focal diagnosis. A headset of this
type of EEG normally has 125 electrodes and is not publicly
available on the market for sale [25]. The headset of research-
Use EEG normally has 64 electrodes [26]. Such devices are not
available for purchase in the markets either. Home-use EEG is
intended mainly for home-use applications, i.e., for lightweight
medical-related uses. The device of this type of EEG only has
three electrodes. Its market is dominated by a company called
NeuroSky [27], which is the first company to commercialize
home-use EEG devices and maintains the largest home-use
EEG market share so far [6], [7]. NeuroSky invented the
PCB module, i.e., the TGAM, which serves as a multi-mode
sensor to collect EEG data, and the EEG system framework
for EEG data transmission. It has an App store where users
can purchase or download BCI apps. It also provides an
SDK for developers to build BCI apps. All in all, NeuroSky
establishes a mature platform for commercialization of the
home-use EEG and hence becomes the most popular brands
of home-use EEG. TGAM measures and offers 10 features of
EEG, namely attention meter, mediation meter, delta, theta,
low alpha, high alpha, low beta, high beta, low gamma, and
high gamma. The attention meter and the meditation meter are
both valuing from 0 to 100, indicating the level of the attention
and that of the relaxation of a human being, respectively. The
techniques to calculate the attention and meditation levels are
quite mature, and have been extensively studied in the field of
biomedical research [28], [29]. In this paper, we do not intend
to cover the corresponding algorithms since they are out of
the scope. Besides these two meters, the other 8 types of data
are traditional EEG waveforms and can be directly measured
through different frequencies illustrated as follows.

• Delta: Delta is measured with frequency less than 4 Hz.
It is often found during sleeping.

• Theta: Theta is measured with frequency ranging from
4 Hz to 7 Hz. It is often found during relaxation and
meditation.

• Alpha: There are two types of alpha values: low alpha
which is measured with frequency ranging from 8 Hz to
9 Hz and high alpha which is measured with frequency
ranging from 10 Hz to 12 Hz. Alpha is usually detected
when eyes are closed or during relaxation.

• Beta: There are two types of beta values: low beta which
is measured with frequency ranging from 13 Hz to 17 Hz
and high beta which is measured with frequency ranging
from 18 Hz to 30 Hz. Beta is usually found during
alertness or focuses.

• Gamma: There are two types of gamma values: low
gamma which is measured with frequency ranging from
31 Hz to 40 Hz and high gamma which is measured
with frequency ranging from 41 Hz to 50 Hz. Gamma
is usually associated with multi-sensory processing, e.g.,
perception involving sound and sight.

B. Threat Model

In our adversarial model, attackers aim to steal brain waves
of NeuroSky users and infer sensitive personal activitites from
these brain waves. For our remote attacks, we assume that an
adversary is able to install a malicious program into a victim’s
PC and to execute the malicious program. There exist various
ways for the adversary to accomplish this task. For example,
the adversary can perform social engineering [30], or exploit
the known RCE vulnerabilities [31]. Note that these techniques
are all viable and feasible, and have been widely adopted as
attack vectors for compromising industrial systems [32] [33]
[34]. In this paper, we do not detail these procedures since they
are out of the scope of our research. On the other hand, our
proximate attack requires an adversary to be in a short-distance
range, i.e., no more than 22 meters, away from the victim.
However, the adversary does not need to have any access to
any of the victim’s devices. An adversary exploiting this attack
can be a malicious neighbor, or a stalker who approaches the
victim’s home. If the victim wears the EEG headset device in
a public area along with his laptop, the adversary can simply
launch the attack in a nearby area, which could be some
distance away and blocked by a few layers of walls, without
triggering his suspicion. The adversary only needs to purchase
related devices such as a GNU radio for a few hundred dollars.

IV. DEMYSTIFYING THE EEG SYSTEM FRAMEWORK

In this section, we introduced the two sides of the EEG
system framework, the user application side where high-level
BCI apps reside and the headset side where brain waves are
collected and transmitted.

A. User Application Side

In the EEG system framework, the software-level imple-
mentations and operations are all integrated in the user’s
application side, whose hardware devices include the user’s
PC where BCI apps are running on and a radio frequency
(RF) dongle serving as a communication bridge between BCI
apps and the EEG headset, which is attached to the PC via
a USB port. After exploring the developer’s documentation,
we recovered the sub-framework in the user application side
and found that a BCI app running in the user’s PC has the
following two ways of retrieving the brain wave data: either
from the standard SDK which retrieves the requested data
from the RF dongle through the USB serial port, or via a
pre-defined low-level socket protocol called ThinkGear socket
protocol (TGSP).

1) EEG Data Retrieval through Standard SDK: The EEG
system framework provides a standard SDK for Windows op-
erating systems so that Windows-based BCI apps can directly
invoke API calls provided by the SDK for EEG data retrieval
and all the necessary API functions are offered by a dy-
namic link library (DLL) binary file called thinkgear.dll.
We reversely engineered the DLL and found that besides
the DLL main entry function DLLEntryPoint, it exports
19 other API functions. After a further exploration, we
identified 4 functions that are mandatory to complete an
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EEG data retrieval, namely TG_GetNewConnectionId,
TG_Connect, TG_ReadPackets, and TG_GetValue,
which are called in the above order; the other 15 functions are
optional as they perform tasks such as writing a log stream,
setting a baud rate, and reading a driver’s version.

2) EEG Data Retrieval through TGSP: The EEG system
framework also provides a low-level socket protocol, TGSP,
for EEG data retrieval. TGSP can not only simplify the EEG
data retrieval process since BCI apps do not need to go
through the tedious SDK API calls, but also allow BCI apps
to be implemented on different platforms other than Windows.
TGSP adopts a server-client structure where there is an official
server provided by NeuroSky, called ThinkGear Connector
(TGC), which runs in the user’s Windows platform, and BCI
apps serve as clients sending requests to TGC and retrieving
the desired data.

As a matter of fact, the method leveraged by TGC to
retrieve the EEG data from the RF dongle is fundamentally
identical to the standard SDK; however, TGC integrates the
API functions inside the TGC program with Windows .NET
framework instead of making API calls to thinkgear.dll.
The communications between TGC and BCI apps follow the
following procedure: TGC first opens a TCP connection with
a fixed port number 13854, then a BCI app registers itself.
After the registration process, the BCI app sends a request to
retrieve the EEG data from TGC. If requested with the JSON
format, TGC responds with the detailed information. After the
verification process, the BCI app can send a request to retrieve
the EEG data from TGC. If requested with the JSON format,
TGC responds with the detailed information.

B. Headset Side

In the EEG system framework, the TGAM chip in a headset
collects user’s EEG signals through the 3 electrodes and
transmits the signals over-the-air through software defined
radio (SDR). In our case, the TGAM in the headset encodes
the EEG raw packets into radio signals, applies one types of
modulation to the signals, and finally propagates the signals
at a certain range of frequency; while the RF dongle takes
care of receiving the signal from the predetermined frequency,
filtering noises, demodulating signals, and finally decoding the
EEG raw packets. We found that TGAM chip can operate on
the frequency band ranging from 2419.9 MHz to 2470.9 MHz
by looking up the Federal Communication Comissino (FCC)
ID printed on the EEG IoT device. We then discovered the
approximate center frequency of 2458.4 MHz with an occu-
pied bandwidth of approximately 1 MHz through HackRF [35]
and GQRX [36]. We conducted 30 experiments on 3 different
NeuroSky EEG devices, 10 for each, and found that all devices
in all experiments used the same center frequency with the
same bandwidth as we mentioned above.

According to our experimental study and analysis described
above, we concluded that the entire EEG system framework
can be sketched as in figure 1. It consists of four components:
BCI apps, RF dongle, TGSP server, and TGAM. A BCI app
is installed in the user’s application side, and it has two ways

of retrieving the user’s EEG data when running, via either
standard SDK or TGSP. If the BCI app requests an EEG data
via the standard SDK, it directly communicates with the RF
dongle through the USB serial port which returns the raw
binary packet of the EEG data; if the BCI app requests an EEG
data via the TGSP server (officially, the Thinkgear Connector),
the server then retrieves the EEG data from the RF dongle
likewise. Lastly, through SDR, the RF dongle receives the raw
EEG data collected by the headset with the multi-modal sensor
TGAM which employs three electrodes to measure the brain
waves from a human scalp. The SDR has a center frequency
roughly located at 2458.4 MHz with an occupied bandwidth
of approximately 1 MHz.

TGAM RF Dongle

BCI Apps

TGSP Server

SDR
Frequency

Standard SDK

TGSP

TGSP

User Application Side

Headset Side

BCI Apps

User’s PC

TGSP

Fig. 1: EEG system framework

V. IMPLEMENTATION OF ATTACK VECTORS

In this section, we detail our novel attack vectors targeting
the EEG system framework we demystified in Section IV.
Our attack vectors can be classified as either remote attacks
or proximate attacks.

A. Remote Attacks

We came up with four remote attack cases based on the roles
a malicious program plays in the EEG system framework: as
a malicious BCI app, as a malicious TGSP server, or as a
malicious SDK. We have fully implemented all these attacks.

1) Malicious Program as a BCI App: The most
straightforward attack is to install a malicious BCI app
which secretly steals a victim’s EEG data. As described in
Section IV, a BCI app can retrieve EEG data through either
the standard SDK or TGSP. Correspondingly, there could be
two approaches to implement such a malicious program.

Exploiting Standard SDK: We first analyzed if it
is possible to implement a malicious BCI app which
steals the victim’s EEG data by exploiting the standard
SDK. After an initial exploration, we found that if there
is no other BCI apps running, our malicious app can
successfully retrieve the EEG data. This is done by letting
the malicious app call TG_GetNewConnectionId and
TG_ConnectTG_ReadPackets in sequence. Since none
of the APIs imposes any authentication restriction for
calling, our malicious app steals the EEG data without any
authentication or verification. However, if there is another
BCI app running, this method fails. We then conducted
dynamic debugging on the binary thinkgear.dll to
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explore the reason and found that when a BCI app calls
TG_Connect, TG_Connect calls a sub-function which
invokes CreateFileA in Windows kernel32.dll and
passes the fixed name of the RF dongle serial port, e.g.,
“COM3”, as the file name to CreateFileA. Therefore,
when a BCI app is accessing the serial port through SDK,
another app would fail since CreateFileA would return
the ACCESS_DENIED error. Hence, through this method, a
malicious app would have to terminate the benign program
running a BCI app or the TGSP server (which is basically
a BCI app), if any, in order to accomplish the attack.
Intuitively, terminating a running benign app can trigger a
victim’s suspicion. Hence, a malicious app has to imitate the
terminated benign app at every level, imposing a tremendous
burden on the attacker.

Exploiting TGSP: A relatively easy approach is to exploit
TGSP; thus we examined the feasibility of a malicious BCI
app accessing the EEG data through TGSP. As we mentioned
in Section IV, the TGSP server adopts a naive verification
step merely for the purpose of distinguishing different apps.
Therefore, we implemented a malicious app using C/C++
which generates a random string as the app name, constructs
a SHA-1 digest for the app name, and sends these two pieces
of information to TGC. If there is a conflict, our malicious
app simply re-generates another random app name. It turns
out that this attack functions normally.

Exploiting TGSP: A relatively easy approach is to exploit
TGSP; thus we examined the feasibility of a malicious BCI
app accessing the EEG data through TGSP. As we mentioned
in Section IV, the TGSP server adopts a naive registration
step merely for the purpose of distinguishing different apps.
Therefore, we implemented a malicious app using C/C++
which generates a random string as the app name, constructs
an SHA-1 digest for the app name, and sends these two pieces
of information to TGC. If there is a conflict, our malicious app
simply re-generates another random app name. It turns out that
this attack functions normally.

2) Malicious Program as a TGSP Server: Instead of creat-
ing a malicious BCI app, we also created a malicious program
which acts as a fake TGSP server and responds to benign
BCI apps while retrieving the EEG data using the standard
SDK. Note that even though this attack is refined based on
the previous attack, it is more complicated since it needs to
maintain TGSP so that benign BCI apps can run normally.

In order for this attack to operate successfully, we first
need to terminate the legitimate TGSP server, TGC, if it is
running. TGC is not executed at the administrator level so that
it can be terminated easily by calling the Windows Kernel API
TerminateProcess. Then our malicious server maintains
the TGSP specifications as we described in Section IV. This
attack is fully implemented in C/C++.

3) Malicious Program as SDK: Besides the attacks men-
tioned above, we also constructed an attack by modifying the
standard SDK into a malicious one. In Section IV, we identi-

fied the 4 mandatory API functions in thinkgear.dll to
complete the EEG data retrieval. Among these 4 functions,
the most important one is TG_GetValue since it returns the
requested EEG data. Hence, directly attacking this function in
thinkgear.dll is the simplest and most effective way to
steal the EEG data.

In order to modify TG_GetValue, we had to dig into the
detailed specification of the function. TG_GetValue is de-
fined in the thinkgear.h header file; it has two parameters:
an integer connectionId and an integer dataType, and
returns a float value of the EEG data specified by dataType.
We were interested in dataType and the returned float
value while the connectionId has little implication to us.
The dataType has 13 different values, namely the 8 EEG
waveforms, the raw voltage value, the meditation meter, the
attention meter, the signal poorness level, and the remaining
battery power.

Having identified our interested values in the function
declaration, we next looked into the function body written
in the thinkgear.dll to come up with a way to retrieve
these values. As one can see in the binary codes of the function
TG_GetValue for a successful data return shown in Figure 2,
the value of dataType is passed to EAX and the returned
value is pushed onto the FPU floating point register stack
st0; therefore, in order to steal these two values, we need
to conduct a DLL injection attack.

In our case, thinkgear.dll does not require the system-
level privilege; thus we used static injection for our attack.
Having decided to use static DLL injection, we then dug
into the details of altering the benign thinkgear.dll into
a malicious one. As discussed above, we need to steal two
values, EAX and st0; therefore, we crafted a shellcode that
can create a TCP client socket via which these two values
are passed to our malicious server. In addition, after looking
into the PE header of thinkgear.dll, we found that the
virtual size and the raw size of the .text sections are 70,692
bytes and 71,168 bytes, respectively, meaning that we need to
squeeze the size of our shellcode to be less than 476 bytes. We
then implemented a shellcode with a size of 275 bytes, which
can steal the two values and pass to our malicious server via
a TCP connection.

Note that one can also attack TG_ReadPackets following
a similar procedure as that for attacking TG_GetValue.
However, TG_ReadPackets returns the raw packet values
with redundant information such as SYNC and CODE. There-
fore, directly attacking TG_GetValue is more efficient.

B. Proximate Attack

Different from the remote attacks in which a malicious
program is required, launching a proximate attack does not
require the installation of any malicious program; however,
a proximate attack requires a distance limit between the
victim and the attacker since the attacker needs to effectively
record the SDR signals emitted from the victim’s headset
device. According to the official documentation provided by
NeuroSky, TGAM is able to transmit within a 10-meter range;
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Fig. 2: The binary codes of TG_GetValue in
thinkgear.dll of a successful data return. As one
can see, the dataType parameter is passed to EAX and the
returned value is passed to st0.

however, we found that the signal can be recovered from
as far as 22 meters away. In section VII, we examined the
performance of signal recovery with respect to the distance
constraint. A proximate attack is composed of the following
two steps: signal recording and signal recovering.

Signal Recording: Recording the signals emitted from the
victim’s headset device is the first step for the proximate
attack. We used HackRF and GUN Radio to accomplish this
step. As described in section IV, the center frequency of
the TGAM SDR wave is located approximately at 2458.4
MHz; however, we should avoid placing our center frequency
for recording at the same location since signal recording
devices such as HackRF generates the so-called Direct Current
(DC) offset in its electronics when transmitting or receiving,
which interferes with our target SDR. Therefore, in order to
circumvent the DC offset which is a signal noise generated
by HackRF and can cause signal distortion, we placed our
recording center frequency according to the following criteria:

Frc ≤ Fsc −
Wsc

2
or Frc ≥ Fsc +

Wsc

2
(1)

where Frc is the recording center frequency of HackRF, Fsc

is the SDR center frequency of the NeuroSky headset which is
2458.4 MHz, and Wsc is the SDR occupied bandwidth which
is 1 MHz. As for the sample rate, we intended to cover at least
twice of the useful bandwidth; therefore, we set it to 4 MHz.
Having determined these key parameters, we implemented the
recording step with GNU Radio which then generates Python
scripts for signal collection.

Signal Recovering: In the first step, we recorded the
victim’s TGAM SDR waves and saved them into a raw wave
file. In this step, we need to recover the wave file and obtain
the EEG data. As mentioned in the first step, in order to avoid
the error generated by the DC offset, we set the recording
frequency to be 2457.9 or 2458.4 MHz; then in this step
we placed the center frequency back to 2458.4 MHz by

applying a frequency translating finite impulse response filter
with an offset of 500 KHz, which translates the frequency
center to 2458.4 MHz. Later we further reduced the noises by
applying a low pass filter with the sample rate of 160 KHz. We
determined this value by gradually shrinking the sample rate
and monitoring if the data can be successfully recovered. As
a result, 160 KHz turns out to be an effective threshold point.
Then we employed the entropy analysis method proposed in
[37] to analyze the encryption strength of raw packets and
found that it is highly likely that the raw waves are trivially
encrypted, e.g., XOR ciphering, meaning that simply replaying
the waves may recover the EEG data. Therefore, in order to
thoroughly verify this possibility, we used one set of devices to
record signals and replay the recorded signals in the RF dongle
of another set of devices for data recovery. We repeated the
experiment for 10 times and the EEG data are all successfully
recovered, which proves our assumption.

In summary, we constructed 4 remote attacks and 1 prox-
imate attack. The two remote attacks serving as malicious
BCI apps exploit either the standard SDK or TGSP; the third
remote attack serves as a malicious TGSP server; and the last
remote attack works as a malicious SDK. In the proximate
attack, an attacker first records the SDR waves emitted from
the victim’s headset device and then replays the recorded SDR
in his RF dongle to recover the victim’s EEG signals.

VI. USER ACTIVITY INFERENCE THROUGH EEG DATA

What information can be reflected from the EEG data
remains to be an active research topic. Besides the tradi-
tional information such as the focal brain diagnosis, attention
level, and meditaion level, as we mentioned above, current
research shows that EEG can possibly be used to predict
viewed images [38], recognize individuals [39], transfer brain
waves to texts [40], monitor sleep [11], and reveal personal
information [5]. However, the EEG data used in these research
projects were collected by strict medical-use or research-
use EEG devices. Whether the reduced-featured EEG data
collected by home-use EEG IoT devices also have the potential
to reveal user’s activities remains unexplored. In this section,
we present our deep learning model which can infer a user’s
current focusing activities with a high accuracy. As one can
see, EEG data reflects rich information about a person’s health
condition; therefore, leakage of the personal EEG data is a
severe violation of privacy.

A. Overview

Inspired by Zhang et al.’s work [40], [41], we leveraged
the idea of parallel feature learning and built our own RCNN
to classify user’s focusing activities. RCNN is composed of
a recurrent neural network (RNN) and a convolutional neural
network (CNN). Finally, we flattened all the features output
by the CNN and RNN networks, concatenated them with
several layers of fully connected feedforward neural networks
to output the final predictions. The overall structure of the
neural network is shown in Figure 3. In order to identify a
proper structure for our problem, we tested different numbers
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of layers for both RNN and CNN, from 3 layers to 8 layers;
it turned out that a 5-layer structure for both RNN and
CNN is the most effective because the in-sample accuracy
of our training data increases most rapidly in this structure
among all others. Note that we cannot directly apply Zhang
et al.’s work to our case because: (1) the size of the input
features of their model is much higher than that of ours since
they used BCI2000 data, (2) the prediction classifications are
totally different, and (3) their model contains an autoencoder
and an autodecoder which fit more complicated situations. In
the following two subsections we detail the RNN and CNN
structures.

B. RNN Learning

Our RNN has 5 layers in total: one fully connected feedfor-
ward layer as the input layer, three hidden layers which contain
one layer of feedforward network and two layers of Long
Short-Term Memory (LSTM) cells, and one fully connected
feedforward layer as the output layer. Each layer contains k
neurons/cells where k is the number of features of the EEG
data. In our RNN model, EEG data is first resized into a 2-
D vector with a shape of [n, k], where n is the number of
samples, or batch size, before the data is fed into the network.
For better elaboration, we employ n = 1 meaning that only
one sample of the features is fed into the network, to present
the basic idea. Suppose we denote the data output by the i-th
layer of our RNN model to be Xr

i , where i = 1, 2, · · · , 5, the
weight vector between the i-th layer and the i+1-th layer to be
W r

i,i+1, and the bias vector of the i-th layer to be Br
i . Having

presented these notations, we can represent the relationship
between the data from two neighboring layers in our model
as:

Xr
i+1 = max(0, Xr

i ∗W r
i,i+1 +Br

i ) (2)

where max(0, x) is the rectifier linear unit (ReLU) used for
the activation function. Having had a big picture of our RNN
structure, our next step is to take a closer look at each LSTM
cell. Suppose at time t, we denote xt to be a scalar data fed
into a LSTM cell, ht to be the output data by the cell, fI
to be the input gate, fF to be the forget gate, fO to be the
output gate, and Ct to be the cell state. Within a LSTM cell,
the following calculations are performed:

fI = σ(WI · ht−1 +WI · xt) +BI (3)

C̃t = tanh(WC · ht−1 +WC · xt +BC) (4)
fF = σ(WF · ht−1 +WF · xt) +BF (5)

Ct = ff ∗ Ct−1 + fi ∗ C̃t (6)
fO = σ(WO · ht−1 +WO · xt) +BO (7)

ht = fo ∗ tanh(Ct) (8)

where C̃t is an intermediate value between Ct and Ct−1, the
variables with letters W and B refer to the weights and biases,
respectively, for that specific gate or cell state, and σ represents
the sigmoid function which has the form of

σ(x) =
1

1 + e−x
=

ex

ex + 1
(9)

At last, our RNN outputs the features with the shape [1, k].

C. CNN Learning

Our CNN has 5 layers as well: one convolutional layer as
the input layer, a max pooling layer, two convolutional layers,
and one fully connected feedforward layer as the output layer.
We denote the data output by the i-th layer to be Xc

i , where
i = 1, 2, · · · , 5, the weight vector between the i-th layer and
the i+1-th layer to be W c

i,i+1, and the bias vector of the i-th
layer to be Bc

i . Similar to RNN, EEG data is first resized into
a 2-D vector with the shape of [n, k]. In the first convolutional
layer, we set the filter with a size of [1, 1] with zero-padding
and output one more dimension in depth. Therefore, Xc

1 has
the shape of [1, k, 2]. For the max pooling layer, we set the
stride to be the shape of [1, 2]; therefore, Xc

2 has the shape
of [1, dk/2e, 2]. We then set the filters for the following two
convolutional layers to be [1, 2] and [1, 4], which yield the
shapes of Xc

3 and Xc
4 to be [1, dk/2e, 4] and [1, dk/2e, 4],

respectively. Then we flatten Xc
4 to feed into the last fully

connected feedforward layer which outputs the features with
a shape of [1, 64]. All layers use the ReLU as the activation
function.

D. Concatenation Layers

Finally, we need to concatenate the features output by RNN
and CNN to generate predictions. Our RNN model outputs
features with a shape of [1, k] and the CNN outputs features
with a shape of [1, 64]. We simply concatenate the features
to get the shape of [1, k + 64] and feed them into two fully
connected feedforward layers which output the features with
shapes of [1, k + 64] and [1,m], respectively, where m is the
number of classes of the user’s activities. Both layers use
ReLU as the activation function. Lastly, we use the Adam
optimization algorithm to reduce our loss function constructed
by the softmax cross entropy [42].

E. Philosophy of RCNN Modeling

Currently, the interpretability of deep learning is still not
sufficiently explored because of its high non-linear architecture
and black-box structure [43]. Due to this low interpretability,
researchers designed their deep learning models starting with
a rough intuition and then adjusting their models (e.g., adding
layers or neurons) to achieve a sound performance without
giving strict theoretical analysis [44], [45]. Similarly, in this
paper, we developed our RCNN model based on intuition
without theoretically verify whether or not our model is
completely suitable for tackling the problem.

The philosophy behind our RCNN modeling is based on
the fact that EEG data is khown to possess both spatial and
temporal correlations [46], [47]. Thus we perceived to design
a model that can seize the spatial and temporal features of
EEG. Noticing that CNN has the capability of capturing spatial
features while RNN has the potential to capture the temporal
features, and that fully-connected layers are able to combine
the features output from CNN and RNN, we designed a RCNN
model shown in Figure 3 for our inference attack. Note that it
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Fig. 3: The RCNN structure. There are 5 layers in the RNN model and 5 layers in the CNN model. The features output by
RNN and CNN are concatenated by 3 fully connected layers for the final predictions.

is not feasible to exhaustively explore every possible variation
of RCNN. We tested multiple models ranging from two layers
to ten layers, and found that our current design has the fastest
decrease speed in the lost function.

VII. EVALUATION

In this section, we evaluate the performances of our designs
from three aspects: influence, robustness, and effectiveness.

A. Influence of the Attacks

In this subsection, we study the numbers of apps in the
NeuroSky App store that are affected by our attacks. So far,
the NeuroSky App store contains 156 apps, with 31 free apps
and 125 non-free apps. Since each BCI app has to go through
the over-the-air (OTA) transmission protocol which is the only
way for communications between a brainwave headset and an
RF dongle as we discussed in section IV, all the 156 apps
publicly available in the NeuroSky App store are vulnerable
to our proximate attack, which exploits the coarse-grained
implementation of SDR.

We downloaded all 31 free apps in the NeuroSky App
Store and conducted an empirical binary analysis against all
of them. Note that, since the malicious programs for the
first two remote attacks presented in section V are malicious
BCI apps themselves, we excluded them in this evaluation
study. Then we analyzed how many apps are vulnerable to the
malicious SDK attack, to the malicious TGSP server attack,
and to both attacks. We noticed that the binary payloads of
all the 31 apps are not encrypted, though some of them are
packed for installation; therefore we directly used IDA Pro for
static binary analysis. To determine whether an app employs
TGSP, we checked if the binary creates a client TCP socket
and connects to localhost or 127.0.0.1 via the port
number 13854; to determine whether an app uses SDK, we

checked if the binary invokes API such as TG_Connect and
TG_GetValue. As we expected, all 31 apps are vulnerable to
at least one of our remote attacks. Table I reports our analysis
results.

TABLE I: The number of free apps vulnerable to the remote
attacks.

# of Vulnerable Apps
Malicious TGSP Server 16 (51.613%)

Malicious SDK 5 (16.129%)
Both Attacks 10 (32.258%)

B. Robustness of the Attacks

Since our remote attacks infect a user’s PC side only, there
is no data loss or data corruption compared to the ground-
truth. The only risk lies in that our malicious programs may be
detected and prevented from execution by anti-virus software
or firewall. Hence, we used VirusTotal, which is one of the
most powerful virus scan engines integrating 58 antivirus
software for detection, and Qihoo 360 antivirus software,
which has more than 400 million users around the world,
to test our malicious programs. We implemented all the four
malicious programs for the remote attacks. Both VirusTotal
and Qihoo 360 fail to recognize any of our programs as
malicious. Hence, our remote attacks are highly insidious.

We then conducted two sets of experiments to study how
distance and barriers can impact on our proximate attack, with
one set in an open area without barriers and one set within
three small neighboring faculty offices separated by two walls.
We detailed the procedures in the following two paragraphs.

In order to study how distance can affect the data being re-
covered, we simultaneously measured the SDR signals emitted
by the victim’s headset whenever the distance from the victim
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to the attacker is increased by 2 meters. Each trial process (at
one location) lasted approximately 2 minutes. We conducted
12 experimental trials (from 0 to 22 meters away from the
victim), yielding roughly 120 pieces of EEG data in average
for each trial (ranging from 106 pieces to 134 pieces of data
for each trial). We found that after the distance between the
attacker and the victim increases to 8 meters, the number of
recovered data drops dramatically. The percentages of the data
recovered vs. distances is detailed in Figure 4.

To study the impact of barriers, we conducted experiments
within three small neighboring offices separated by two walls,
which mimics a real-world environment in which the attacker
and the victim are separated by a few walls. We conducted
6 trials, with 3 of them for the case in which the attacker
and the victim are separated by one wall (their distance is
about 1 meter), and the other three for the case when they are
separated by two walls (their distance is about 3 meters). Each
trial lasted around 2 minutes, yielding a range of 112 to 128
pieces of data for each trial. By repeating the same process we
did for EEG data recovery in the open area, we found that in
average about 84.09% of data can be recovered if there is one
wall as a barrier, and about 47.39% of data can be recovered
if there are two walls as barriers.

Fig. 4: The percentage graph of the EEG data being recovered
vs. the distance between the attacker and the victim. The y-axis
is the percentage of data being recovered over the ground-truth
data, while the x-axis is the distance in meters.

C. Effectiveness of the User Activity Inference

In order to evaluate our RCNN learning model, we need
to have data for training and testing. Fortunately, NeuroSky
published a large dataset publicly available on Kaggle for
research [48], which contains 9,959 pieces of data collected
by 30 volunteers. Each volunteer wore a NeuroSky headset
constantly collecting the participant’s EEG data for different
tasks. Each data record contains a piece of reduced-featured
EEG data with 10 features as described in section III plus the
signal poorness level. There are 9 activities a participant may
work on: reading instructions, blinking, seeing colors, solving
math problems, listening to music, getting ready for next task,
relaxing, thinking of an item, and watching videos. Each piece
of data completely defines an activity. Echo back to our RCNN

TABLE II: Inference accuracies of different classifiers.

Accuracy
Random Guess 11.11%

SVM 29.59%
KNN 10.35%

Gaussian Bayes 25.92%
Bernoulli Bayes 24.44%

Multinomial Bayes 10.17%
Decision Tree 24.94%

Random Forest 30.72%
MLP 17.41%

Adaboost 28.79%
Quadratic Discriminant 24.14%

Logistic Regression 27.61%
Our RCNN Model 70.55%

model, we have n = 9959, k = 11 and m = 9.
To evaluate the effectiveness of our model, we compared

the prediction results by our model with those of other 11
most widely-used and well-known machine learning classi-
fiers: SVM, Gaussian Bayes, Bernoulli Bayes, Multinomial
Bayes, K-nearest neighbors (KNN), decision tree, random
forest, multi-layer perceptron (MLP), AdaBoost, quadratic dis-
criminant analysis, and logistic regression. In each simulation
trial, we randomly chose 1,000 pieces of data for testing
and used the rest for training, and applied each of the 12
algorithms for prediction; we repeated this procedure for 50
times and calculated the average prediction accuracy for reach
classification algorithm. The averaged prediction accuracy is
defined as follows:

1

50

50∑
i=1

|{yij |yij = y′ij , ∀1 ≤ j ≤ 1000}|
1000

(10)

where i represents the i-th prediction trial (totally 50 trials), j
represents the j-th piece of the test data (totally 1,000 pieces
of data), yij is the predicted result of the j-th testing data
at the i-th trial, and y′ij is the ground truth label of the j-th
testing data at the i-th trial.

Our RCNN model has an average accuracy of 70.55%,
which far exceeds those of all other popular classifiers whose
largest accuracy value is 30.72%. Note that we conducted
the simulation study when 10% and 20% of the test data
were dropped and obtained exactly the same results. This is
reasonable as i) the training data is not affected as an adversary
can collect training data from all possible channels and ii) each
piece of data completely defines one activity. The averaged
prediction accuracies of all classifiers are shown in Table II.

VIII. DEFENSE SOLUTIONS

In this section, we demonstrate defense solutions to mitigate
our proposed attacks. For mitigating the remote attacks, we
propose an OAuth-based framework to mitigate unautho-
rized applications exploiting standard SDK and TGSP, and
a signature-based solution to mitigate malicious SDK and
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malicious TGSP server. For mitigating the proximate attacks,
we propose an encryption-based solution to eliminate possible
eavesdropping and replay attacks.

A. Solutions to Mitigate Remote Attacks

1) OAuth-based Framework: The root cause of EEG data
leakage to malicious applications through SDK and TGSP is
because the ThinkGear framework lacks necessary authentica-
tion/authorization. Having noticed the cause, we realize that
OAuth [49], a well-known authorization and authentication
protocol, can be applied to the ThinkGear framework in order
to eliminate attacks resulting from unauthorized malicious
applications.

2) Signature-based Solution: NeuroSky does not imple-
ment any tamper-resistent techniques, allowing an attacker
to arbitrarily modify or fabricate its binary programs, i.e.,
thinkgear.dll and TGSP server. Digital signature can be
applied to protect applications from unauthorized modifica-
tions.

B. Solution to Mitigate Proximate Attack

In order to inhibit the proximate attack, one could eliminate
the possibility of the replay attack. Simple encryption methods
for radio frequency such as voice inversion, hopping inversion
and rolling code inversion are easy to be cracked and are
vulnerable to replay attacks. However, the computation power
of the EEG devices limits the use of complex encryption pro-
tocols such as the secure sockets layer (SSL). Having realized
this, we suggest adopting advanced encryption standard (AES)
for secure EEG data transmissions.

IX. CONCLUSION

In this paper, we conducted a thorough security analysis on a
typical home-use EEG IoT device, the NeuroSky EEG device.
We first demystified the NeuroSky EEG system framework
and identified its security weaknesses via which we imple-
mented two novel easy-to-exploit attack vectors containing
four remote attacks and one proximate attack. An attacker
can steal a victim’s brainwave data via any of the attacks.
We further conducted an empirical analysis on the BCI apps
in the official NeuroSky App store and found that (i) all 156
apps are vulnerable to our proximate attack, and (ii) all free
apps are vulnerable to either the malicious TGSP server attack,
or the malicious SDK attack, with 32% of them vulnerable to
both attacks. Moreover, we constructed a novel deep learning
model to infer user’s sensitive activities based on the reduced-
featured EEG data collected by the home-use NeuroSky EEG
device and obtained an accuracy as high as 70.55%, which
far exceeds those of the other 11 well-known and widely-used
classifiers we compared against.
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